Diagnostic Value of Cardio Imaging

BY C12

Introduction

- Cardio imaging has evolved greatly in recent years and offers valuable insights into the functional and structural aspects of the cardiovascular system.
- Cardiovascular diseases are a leading cause of mortality and morbidity worldwide which makes cardio imaging necessary for early intervention and treatment.
- This presentation will provide a comprehensive review of the value of cardio imaging modalities including, nuclear cardiology, echocardiography, cardiac MRI, and Cardiac CT.

Objectives

- Define cardiovascular disease
- Define cardiovascular imaging
- Discuss the different modalities used in cardiovascular imaging
- Compare the different modalities used for cardiovascular imaging

Cardiovascular Disease (CVD)

Definitions

- CVD A group of disorders that affect the heart and surrounding blood vessels
- Sensitivity- a test's ability to determine if an individual is positive for a disease
- Specificity- a test's ability to designate an individual who does not have a disease or is negative

Most common disorders

- Coronary Artery Disease (CAD)
- Valve Disease
- Aneurysm
- Cardiac Arrhythmia
- Cardiomyopathy
- Pericarditis
- Heart Failure

CVD RISK FACTORS

Modifiable Risk Factors

- High blood pressure
- High cholesterol
- Use of tobacco products
- Obesity
- Diet
- Lack of physical activity

Non-Modifiable Risk Factors

- Race and ethnicity
- Age
- Gender
- Genetic Factors

Cardiovascular Imaging

- Cardiovascular Imaging is a broad term used to describe several different ways to image the heart.
- Equipment used:
 - Fluoroscopy
 - Ultrasound
 - Computed Tomography
 - Magnetic Resonance Imaging

	Imaging Modality	Exercise Stress Testing	Stress Echocardiography	SPECT-MPI	PET-MPI	Coronary CT- angiography	Cardiac MRI
	Advantages	 Cheap Widely available No radiation exposure 	 Widely available No radiation exposure Provides structural information New techniques for viability testing 	 Widely available Provides functional information Can be performed in all patients 	 High accuracy Provides functional information Quantitative information on MBF Novel techniques for plaque vulnerability 	 Widely available Provides anatomical information High diagnostic performance Novel techniques for functional information 	 Highly accurate No radiation exposure Provides functional and anatomical information Quantitative information on MBF Useful in MINOCA
	Disadvantages	 Lower sensitivity and specificity Poorer performance among women relative to men 	 Lower sensitivity and specificity compared with MRI, CT and PET Operator variability Poorer-quality images in larger patients 	 Lower sensitivity and specificity compared with MRI, CT and PET Radiation exposure False-positives from breast attenuation 	 Limited availability Radiation exposure Expensive 	 Use of contrast may preclude use renal failure Radiation exposure Image quality reduced in patients with high heart rate, elevated BMI and dense coronary calcifications 	 Limited availability Implanted devices may preclude its use Gadolinium contrast may limit use in renal failure

https://www.mdpi.com/2308-3425/9/10/350

https://medlineplus.gov/ency/article/003876.htm

https://bjcardio.co.uk/2017/10/current-diagnostic-yield-of-invasive-coronaryangiography-at-a-district-general-hospital/

Invasive Coronary Angiography

- A catheter is inserted into a blood vessel and is passed up to the heart where contrast is injected to see the heart and surrounding blood vessels under fluoroscopy or CT.
- Considered the gold standard
- Sensitivity of 96%
- Specificity of 86%

Nuclear Cardiology

The radiotracer, injected into a vein, emits gamma radiation as it decays. A gamma camera scans the radiation area and creates an image.

Gamma camera

https://medlineplus.gov/ency/article/007201.htm

https://centrelakeimaging.com/nuclear-stress-test

- Nuclear Cardiology
 - Uses radionuclides and imaging to study the structure and function of the heart
- Myocardial perfusion imaging
 - Uses a radionuclide to assess blood flow through the heart
- Sensitivity of 85-90%
- Specificity of 70-75%

Echocardiography

Echocardiogram

 Uses high frequency sound waves or ultrasound to create live pictures of the heart and surrounding blood vessels

Doppler Echocardiogram

- Uses ultrasound to track and assess blood flow through the heart
- Sensitivity of 80-85%
- Specificity of 84-86%

https://www.sciencedirect.com/topics/medicine-and-dentistry/colordoppler-echocardiography

https://www.health.com/echocardiogram-7106716

Cardiac MRI

Magnetic Resonance

Imaging - Uses a strong magnetic field and radio waves to produce images of the heart and blood vessels

- Sensitivity of 90%
- Specificity of 81%

https://en.wikipedia.org/wiki/Cardiac_magnetic_resonance_imaging

MRI scanner

#ADA.M. https://www.mountsinai.org/he alth-library/tests/heart-mri

Cardiac CT

Computed Tomography

- Uses a narrow beam of x-rays that is rotated around the patient to create a 3D image of the patient's anatomy
- Cardiac CT
- Directs the narrow beam of x-rays at the patient's heart to create images of the heart and surrounding blood vessels
- Sensitivity of 94%
- Specificity of 97%

https://www.dicardiology.com/article/current-evidence-cardiac-ct-calls-changerecommendations-and-reimbursements

Dual Beam CT technology

- Dual beam technology uses two overlapping x-ray beams to focus on the patient's heart
- Focused field of view for better resolution

https://www.arineta.com/technology/

Sensitivity and Specificity

Conclusion

- Cardio imaging is a set of diagnostic procedures and modalities used to assess the heart
- Advances in cardio imaging have allowed healthcare providers a better understanding of cardiovascular diseases
- Al and future technologies will help advance these procedures and help increase the diagnostic value.
- Thank you for your time

References

- Centers for Disease Control and Prevention. (2023, May 15). *Heart disease facts*. Centers for Disease Control and Prevention. <u>https://www.cdc.gov/heartdisease/facts.htm</u>
- Chin Diana, Allegra Battistoni, Giuliano Tocci, Jasmine Passerini, Gianfranco Parati, Massimo Volpe, Non-Invasive Diagnostic Testing for Coronary Artery Disease in the Hypertensive Patient: Potential Advantages of a Risk Estimation-Based Algorithm, *American Journal of Hypertension*, Volume 25, Issue 12, December 2012, Pages 1226–1235, <u>https://doi.org/10.1038/ajh.2012.90</u>
- Color doppler echocardiography. Color Doppler Echocardiography an overview | ScienceDirect Topics. (n.d.). https://www.sciencedirect.com/topics/medicine-and-dentistry/color-doppler-echocardiography
- damian@tardencilla.com, D. T.-. (n.d.). Nuclear stress test: Centrelake Imaging. centrelakeimaging. https://centrelakeimaging.com/nuclear-stress-test
- Dfornell. (2021, October 1). Current evidence for cardiac CT calls for change in recommendations and reimbursements. DAIC. https://www.dicardiology.com/article/current-evidence-cardiac-ct-calls-change-recommendations-and-reimbursements
- Di Leo G, Fisci E, Secchi F, Alì M, Ambrogi F, Sconfienza LM, Sardanelli F. Diagnostic accuracy of magnetic resonance angiography for detection of coronary artery disease: a systematic review and meta-analysis. Eur Radiol. 2016 Oct;26(10):3706-18. doi: 10.1007/s00330-015-4134-0. Epub 2015 Dec 11. PMID: 26662033.
- Gaine, S. P., Sharma, G., Tower-Rader, A., Botros, M., Kovell, L., Parakh, A., Wood, M. J., & Harrington, C. M. (2022, October 13). *Multimodality imaging in the detection of ischemic heart disease in women*. MDPI. https://www.mdpi.com/2308-3425/9/10/350
- Gorenoi V, Schönermark MP, Hagen A. CT coronary angiography vs. invasive coronary angiography in CHD. GMS Health Technol Assess. 2012;8:Doc02. doi: 10.3205/hta000100. Epub 2012 Apr 16. PMID: 22536300; PMCID: PMC3334923.
- Pastore Maria Concetta, Giulia Elena Mandoli, Francesco Contorni, Luna Cavigli, Marta Focardi, Flavio D'Ascenzi, Giuseppe Patti, Sergio Mondillo, Matteo Cameli, "Speckle Tracking Echocardiography: Early Predictor of Diagnosis and Prognosis in Coronary Artery Disease", BioMed Research International, vol. 2021, Article ID 6685378, 11 pages, 2021. https://doi.org/10.1155/2021/6685378
- Naylor Association Management Software. (n.d.). Naylor Association management software. About Nuclear Cardiology. https://www.asnc.org/nuclearcardiology#:~:text=Nuclear%20cardiology%20studies%20use%20noninvasive,is%20the%20most%20widely%20used.
- Ramjattan NA, Lala V, Kousa O, et al. Coronary CT Angiography. [Updated 2023 Jan 19]. In: StatPearls [Internet]. Treasure Island (FL):
- Rauf, A. (2017, October 1). Current diagnostic yield of invasive coronary angiography at a District General Hospital. The British Journal of Cardiology. https://bjcardio.co.uk/2017/10/current-diagnostic-yield-of-invasive-coronary-angiography-at-a-district-general-hospital/
- StatPearls Publishing; 2023 Jan-. Available from: https://www.ncbi.nlm.nih.gov/books/NBK470279/
- Spotlight duo: Innovative advanced stereo CT imaging/scanner. Arineta. (2023, November 22).https://www.arineta.com/technology/
- Wikimedia Foundation. (2024, January 13). Cardiac magnetic resonance imaging. Wikipedia. https://en.wikipedia.org/wiki/Cardiac_magnetic_resonance_imaging